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Abstract

The study of number sequences has been a source of attraction to the
mathematicians since ancient times. Since then many of them are focusing their
interest on the study of the numbers. Undoubtely, triangular numbers are one of
these numbers. In this study, we deal with the relations between square
triangular numbers, special condition of triangular numbers, and balancing

numbers. Also, we investigate positive integer solutions of some Diophantine
equations such as (x +y — 1)2 =8xy, (x + y + 1)2 = 8xy, (x + y)2 =4x(2y 7 1),
(x + y)2 =2x(4y 7 1), (x +y¢1)2 =8xy+1, a2 +y> — 6xy = ¥L, x> + y> — 6ay

Fx =0, x2 - 6xy + y2 F 4x —1 = 0, and other similar equations related to square

triangular and balancing numbers.
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1. Introduction

By a triangular number, we mean the number of the form 7, =
n(n +1)/2, where n is a natural number. A few of these numbers are
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ..., and so on. Also, it is well known that x
is a triangular number, if and only if 8x + 1 is a perfect square. The n-th
triangular number is formed using an outher triangle, whose sides have n
dots. Similarly, square numbers can be arranged in the shape of a square.
The m-th square number is formed using an outher square, whose sides
have m dots. The m-th square number is §,, = m2[14]. Balancing

numbers are numbers that are the solutions of the equation

1+2+..+(m-1)=(m+D)+(m+2)+...+(m+r), (1.1)

calling r € Z*, the balancer corresponding to the balancing number m.
For example, 1, 6, 35, and 204 are balancing numbers with balancers 0, 2,
14, and 84, respectively. In what follows, we introduce cobalancing

numbers in a way similar to the balancing numbers. By modifying (1.1),

we call m € Z*, a cobalancing number if

142+, +(m-1)+m=m+1)+(m+2)+...+(m+7r), (1.2)

for some r € Z*. Here, we call r € Z*, a cobalancer corresponding to the

cobalancing number m. A few of the cobalancing numbers are 0, 2, 14,
and 84 with cobalancers 1, 6, 35, and 204, respectively [7], [8]. In this
chapter, one of the major question we will be interested in answering is
whether or not there is a close relations between square triangular
numbers and balancing numbers. Since triangular numbers are of the

n(n +1) 9

form T, = and square numbers are of the form S,, = m~,

square triangular numbers are integer solutions of the equation m? =

n(n +1)
2
to see how square triangular numbers are obtained from this problem. In

[14]. We will get this equation again using an amusing problem

Equation (1.1), if we make substitution m + r = n, we get
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1+2+...+(m-1)=(m+D)+(m+2)+...+n. (1.3)

Then this equation gives us a problem as follows:

I live on a street, whose houses are numbered in order 1, 2, 3, ...,
n —1, n; so the houses at the ends of the street are numbered 1 and n. My
own house number is m and of course, 0 < m < n. One day, I add up the
house numbers of all the houses to the left of my house; then I do the
same for all the houses to the right of my house. I find that the sums are
the same. So, how can we find m and n [13]? Since 1+2+3+...+ m -1
=(m+1)+...+(n-1)+ n, it follows that

(m-1)m _ n(n+1)_m(m+1)‘

2 2 2

2

Thus, we get m* = @ Here, m?is both a triangular number and a

2isa square triangular number. In Equation

square number. That is, m
(1.3), since m 1is a balancing number, it is easy to see that a balancing
number i1s square root of a square triangular number. For more
information about triangular, square triangular, and balancing numbers,

see [1], [2], [12], and [17].

a-b
42
a=(3+2V2)" and b = (3 - 2v/2)". In 1879 Roberts [2], by using Euler’s

formula, showed that the n-th square triangular number ¢,, is given by

2
Euler [2] showed that ( ) is a triangular number for

. _[asver—a-vepn T
" 42 '

After then Subramaniam showed that u, = 6u,_1 —u,_o by taking

u, = @ (see [15], [16]). Actually, the elements of the sequence (u,,) are

balancing numbers, which are obtained from the solutions of the
Equation (1.3). In this chapter, we will develop a method for finding all
square triangular numbers after using well known theorems. For this, we
will use some Diophantine equations, whose solutions are related to Pell,

Pell-Lucas, and the sequence (v,, ), where v,, is given by
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Up = Q2n'
Before discussing about these sequences, we introduce two kinds of
sequences named generalized Fibonacci and Lucas sequences {U,} and

{V,}, respectively. For more information about generalized Fibonacci

and Lucas sequences, one can consult [4], [5], [6], [10], [11], and [18]. The

generalized Fibonacci sequence {U,,} with parameter k and ¢, is defined
by Uy =0,U; =1, and U, ,; = kU, +tU,_; for n>1. Similarly, the
generalized Lucas sequence {V, } with parameter k and ¢, is defined by
Vo=2V, =k, and V, 4 = kV, +tV,_; for n>1, where k? +4¢ > 0.

Also generalized Fibonacci and Lucas numbers for negative subscript are

(‘U)';Z and V_, = (V")n for all n € N. When % = 2
-1 -1

and ¢t =1, we get U, = P, and V,, = @,,, where P, and @, are called

defined as U_,, =

Pell and Pell-Lucas sequences, respectively. Thus, Py =0, P, =1, and
P,.1=2P,+P,,; for n>1 and @y =2,Q; =2, and Q,,1 = 2Q, + @,
for all n € N. When £ =6 and ¢ =-1, we represent U,, and V,, by u, and
v,, respectively. Thus, uyg =0, =1, and u,,; =6y, —u,_; and
vp =2,v, =6, and v,,; =6v, —v,_; for all n>1. Now, we present
some well known theorems regarding the sequences (P,), (®, ), and

(u,, ) without proof.

Theorem 1.1. Let y and 8 be roots of the characteristic equation

yn_Sn

/2

Theorem 1.2. Let o and B be roots of the characteristic equation

x? —2x —1 = 0. Then, we have P, = and @, =y" +38".

2 _ _(Xn_Bn _.n n
x°-6x+1=0. Then u, = —=— and v, =a" +p".

42

The formulas given in the above theorems are known as Binet’s

formula. Let B,, denote n-th balancing number. From [8], we know that
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B - (3++/8)" —(3-+8)"
" 28 '

:PZn

5 and

From Theorems 1.1 and 1.2, it is easily seen that u, = B,
Up = Qo
The proof of the following theorem is given in [3].
Theorem 1.3. Let Z[vV2] = {a + bv2|a, b € Z} and y = 1 + V2. Then
the set of units of the ring Z[2] is { Tv"|n e Z}.

Now, we mention some equations, whose solutions are related to

(P,) and (@, ). Before discussing the equations, we give some known

identities for (P, ), (®,,), (B, ), and (v, ).

Well known identities for (P, ), (@, ), (B, ), and (v,, ) are

Qr — 8P = 4(-1)", (1.4)
v2 —32B2 = 4, (1.5)
Pop+ P = Qn’ (1.6)
2 2 - _
Bn - GBan_l + Bn—l = 1, (17)
and
2 _
U, = Ug, + 2. (1.8)

The following theorem is a well known theorem. We will give its proof

for the sake of completeness.

Theorem 1.4. All positive integer solutions of the Pell equation

% p

5 n) with n>1.

x? - 2y = F1 are given by (x, y) = (
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Proof. Assume that (x, y) = (%, Pn). Then (x —v2y)(x +v2y) = 71

and this shows that x — /2y is a unit in Z[+/2]. Moreover, since x > 0
and y > 0, we get x + V2 y > 1. Therefore, there exists positive integer n
such that x ++/2y =y = yP, + P,_; by Theorem 1.3. Since yP, + P, ;

=(1+ x/E)Pn +P, =P, +P, 1+ x/EPn, we get (x,y)=(P, + P,_1, P,).

1 1 1
Thus, x:Pn+Pn71 25(2Pn+2Pn71):§(2Pn+Pn71 +Pn71):§(Pn+1+

Pn,l)zéQn by identity (1.6). This shows that x = % and y = P,.

Q@

Conversely, if (x, y) = ( o

P, ), then it follows from identity (1.4) that

2

x° —2y° =7Fl. ]

By using (1.4) and the above theorem, we can give the following

corollaries:

Corollary 1. All positive integer solutions of the Pell equation

Q2n
2

x? = 2y% =1 are given by (x, y) = [ , PQ”) with n>1.

Corollary 2. All positive integer solutions of the Pell equation

x? = 2y% = —1 are given by (x, y) = (%, P2n+1j with n>0.

We now give the characterization of all square triangular numbers.

Theorem 1.5. A natural number x is a square triangular number, if

and only if x = B,%, for some natural number n.

Proof. Assume that x 1is square triangular number. Then

x = @ = m?, for some natural numbers n and m. Next, multiplying

both sides by 8 and rewriting the previous equation, we obtain

8m? =4n? +4n = 2n +1)* - 1.
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Let x = 2n +1 and y = 2m. Then we get
xZ - 2y2 =1.

Then by Corollary 1, it follows that (x, y) = [%, Pan = (%’, 2Bn}.

Therefore, 2n +1 = v?n and m = B,,. This shows that x = m? = BE. Now

assume that x = B%. By identity (1.5), we get

cop? Uit (0, -2)/4) (v +2)/4) _ (vp ~2)/4) (v, ~2)/ 4 +1)
n 32 2 2

Therefore, when x = Bg, x 1s a square triangular number. This concludes

the proof. n

2. Positive Solutions of Some
Diophantine Equations

In this section, we consider the equations (x +y— 1)2 = 8xy,
x+y+12 = 8xy, x+y2 =4x(2yF¥1), x+y$12 =8xy+1,x2+y2—6xy
(

=7Tl, x2 + y2 — 6xy T x = 0, and other similar equations. The solutions

of these equations are related to square triangular numbers, balancing
and cobalancing numbers, and the sequence (y, ), where y,, is given by

1
Br2z _ yn(yg + )

By Theorem 1.2, it is known that B2 = (v = 2)/ 4) (v + 2)/4). If we

2
L -2 1
make substitution 2 = y,, then we get B,Ql = % Here, a
few terms of (y,) sequence are 1, 8, 49, 288, ..., and so on. The following

lemma 1s given in [9]:

Lemma 1. For n>2, y,.1 = 6y, — ¥,_1 + 2.
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Proof. Since y,, = 0”4_ and v, = 6v,,_; —v,_9 With n>2, we get

6yn = Yn-1 +2=6((v, —2)/4) - ((v,1 —2)/4)+2
= ((6v, —v, 1 —2)/4)
= (U1 = 2)/4) = Yna1-
That is, Y1 = 6n — Yp1 + 2- "

For n =1, 2, ..., let b, be n-th cobalancing number and so let (b,,)

denote the cobalancing number sequence. Then, the cobalancing numbers
satisfy the similar recurrence relation given in Lemma 1. The proof of the

following lemma is given in [7].
Lemma 2. For n>1, b,,; = 6b, —b,_1 + 2.
Lemma 3. For every n>1, yy, = 8B,2L and yo9,,1 = 8B, B, ;1 +1.

Proof. By identities (1.5) and (1.8), we get

2
B2:Un_4zv2n_2_y2n

" 32 32 8

Therefore y,, = SB%. Moreover, since y,.1 =6y, — ¥,-1 +2, we get

Yn = (¥ns1 + Yn_1 — 2)/ 6 and therefore by using ys,, = 8B2, we find

nos

2 2 2 2
_ Yon+2 + Yon — 2 _ 8Bn+1 + 8Bn -2 _ 8(Bn+l + Bn)_ 2
Yon+1 = 6 = 6 = 6 .

Since B,ZHl + B,% = 6B, B, ,1 +1 by identity (1.7), we get

8(B2,+B2)-2 86B B,.1+1)-2
Yoni1 = ( n+16 n) _ ( n ngl ) ZSBan+1+1'

Therefore yg,,,1 = 8B,B,,.1 +1. This concludes the proof. L]

Now, we can give the following theorem. Since its proof is easy, we

can omit it.
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2
Theorem 2.1. If n is an odd natural number, then y, = T” and if n
2
n

is an even natural number, then y, = . 1.

At the introduction of this study, we say that if x is a triangular

number, then 8x +1 is a perfect square. Also, since y9,.1 = 8B,B,,1 +1

2
and yo,,1 = %, it follows that B, B,,; is a triangular number.

Moreover by Lemma 3, it is seen that y, is odd iff n is odd and y, is

even iff n is even. From now on, we will try to find all positive integer
solutions of some Diophantine equations. Before giving these equations,
we present the following identities that will be useful for finding
solutions. Since the proof of the identities is found by using Binet’s

formulas, Lemma 2, and induction method, we omit them.

Theorem 2.2. For every natural number n, we have the following

identities:
Upnt+1 = 4P2n+1 + Q2n+1’ 2.1)
Up = 4P2n-¢—1 - Q2n+1’ (2.2)
+ 2P
Bn+1 — Q2n+1 1 2n+1 , (2.3)
B, - Qon+1 _42P2n+1 , 2.4)
b, =y, + By, (2.5)
and
bn = Yn+l — Bn+1. (26)

In [9], Potter showed that (y, + ¥,.1 — 1) = 8y,¥,.;. By means of

this equation, we find other similar equations and we investigate

solutions of them. Now we give the following theorem:



80 OLCAY KARAATLI and REFIK KESKIN

Theorem 2.3. All positive integer solutions of the Diophantine

equation (x + y —1)> = 8xy are given by (x, y) = (¥, Yps1) with n>1.

Proof. We know that (y, + ¥4 —1)° = 8Y,¥ns1 from [9]. Therefore,
(x, ¥) = (3, ¥ns1) is a solution of the equation (x + y —1)* = 8xy. Now

assume that (x +y —1)2 = 8xy for some positive integers x and y. A
simple computation shows that x # y. Then without loss of generality,

we may suppose that y > x. If we make substitution v = x +y and
v =y-x, then we get (u—1)? = 2(u? —v?) and therefore u? — 2u +1

u+1.2
—)

= 2u? — 202, This shows that v —( = —1. Then by Corollary 2, it

follows that (v, 2 ;— 1 ) = ( Q2é”1 , Py,.1) for some n>0. Therefore,

=2Py,,;1 -1 and vz%. Since u =x+y and v =y —x, we get

u =

x=Y ; Y and y =Y U This shows that x = 4Pon 1 _4Q2”+1 -2 and
4P. -2 . . .

y = 2n+l +4QZ”+1 . By using identities (2.1) and (2.2), we get
v, —2 Upe1 — 2 .. .

x = and y = - This implies that x = y,, and y = y,,,1. =

By using the above theorem, we can give the following three theorems

in a similar way:
Theorem 2.4. All positive integer solutions of the Diophantine

equation (x +y — 2)2 = 8xy are given by (x, y) = (2y,,, 2¥p41) with n>1.

Theorem 2.5. All positive integer solutions of the Diophantine
equation (x +y +1)* = 8xy are given by (x, y) = (¥, +1, Y1 +1) with

n=0.
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Proof. Assume that (x + y + 1)2 = 8xy for some positive integers x

and y. Let we make substitution © = x —1 and v = y — 1. Then we get
w+v+3)? =8u+1)(v+1).

When we rearrange the equation, we get (v + v —1)2 = 8uv. Then the

proof follows from Theorem 2.3. Conversely, if (x, y)=(y, +1, y,+1 +1),

then a simple computation shows that (x + y + 1) = 8xy. n

Theorem 2.6. All positive integer solutions of the Diophantine equation
(x + y +2)? = 8xy are given by (x, y) = (2y, + 2, 2y,.1 + 2) with n > 0.
Now, we can give the following theorems, formed by means of the

above theorems, whose solutions are related to square triangular

numbers, balancing and cobalancing numbers, and the sequence (y,, ).

Theorem 2.7. All positive integer solutions of the equation (x + y)2
= 4x(2y +1) are given by (x, y) = (4B, 4B,B,,1) or (x, y) = (4Bn .3,

Proof. Assume that (x + y)2 = 4x(2y + 1) for some positive integers x

and y. Then (2x + 2y)* = 16x(2y +1) and therefore (2x + 2y +1-1)* =
8.2x(2y +1). Then by Theorem 2.3, it follows that (2x, 2y +1) = (y,,,
Yns1) o (2x, 2y +1) = (¥,,41, ¥, ) for some n>1. Firstly, assume that
(2x, 2y +1) = (¥, Yps1) for some n>1. Since y, is even, then n is also
even. Let n = 2k with £>1. Thus x = y9;,/2 and y = yg,,1 —1/2. By
using Lemma 3, it follows that x = 4B;§ and y = 4BpBj,,;. Similarly, if
(2x, 2y +1) = (¥py1» ¥n), wWe see that x = 4Bz,; and y = 4B,B,.;.
Conversely, if (x, y) = (4B2, 4B,B,.;) or (x,y)= (4B2,;, 4B,B,.1),
then with a simple computation by using identity (1.6), we get (x + y)2 =
4x(2y +1). "
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From the above theorem, we can give the following corollary:

Corollary 3. All positive integer solutions of the equation x2 + y2
—6xy - 2x = 0 are given by (x, y) = (2B, 2B,B,.1) or (x, y) = (2B7.1,

Proof. x? +y? —6xy —2x =0 iff (x+y)® = 2x(dy +1) iff (2x +2y)* =
4.2x(2.2y +1). Then the proof follows from Theorem 2.7. n

Since the proof of the following theorem is similar to that of above

theorem, we omit it.

Theorem 2.8. All positive integer solutions of the equation (x + y)2
= 4x(2y —1) are given by (x, y) = (4BpBp,1 + 1, 432 +1) or (x, y) =
(4B, Bj,.1 +1, 4B2,1 +1) with k>1.

From the above theorem, we can give the following corollary without

proof:

Corollary 4. There is no positive integer solutions of the equation

x2+y2—6xy+2x=0.

Theorem 2.9. All positive integer solutions of the equation
(x + y+1)? = 8xy +1 are given by (x,y)=(1,1) or (x, y)= (b, +1,b,1 +1)

with n>1.

Proof. Assume that (x + y + 1)2 = 8xy + 1 for some positive integers

x and y. For x =y, it is clear that (x, y) = (1, 1) is a solution of the

equation (x + y + 1)2 = 8xy + 1. Then assume that x # y. Then without
loss of generality, we may suppose that x > y. Let u=x+y and

u-—-"v

v=x-y Then x = LTV and y=— Since (x+y+1)2 = 8xy +1,

2 2
we get (u+1)% = 8 % )+ 1. This shows that (u—1)? — 20% = 1. By
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Corollary 1, it is seen that (v -1, v) = (07”, 2B,,) for some n>1. Thus

u = U?n +1 and v = 2B,,. Substituting these values of © and v into the

equalities x = urv andy:%, we get
u+v U, /2+1+2B, v, +4B, +2 v, -2+4B, +4
2 2 a 4 a 4
=y, + B, +1,
and
u-v v, /2+1-2B, v, -4B,+2 v, -2-4B, +4
YT T T 2 - 4 - 4
=y, - B, +1.

That is, x = y, + B, +1 and y = y, — B, +1. By identities (2.5) and
(2.6), it follows that x =b,+1 and y =b,_; +1. Conversely, if

x=b,+1 and y =b,_1+1, then a simple computation shows that
(b, +b, 1 +3)* =8(b,_1 +1)(b, +1)+1. This concludes the proof. "

Since the proof of the following theorem is similar to that of above
theorem, we omit it.

Theorem 2.10. All positive integer solutions of the equation

(x +y-1)? = 8xy +1 aregiven by (x, y) = (b, b,_1) with n>2.

Theorem 2.11. All positive integer solutions of the equation

x% + y% ~ 6xy = 1 are given by (x, y) = (Byy1, By ) with n>1.

2

Proof. Assume that x“ + y2 — 6xy =1 for some positive integers x

and y. Then (x - y)2 —4xy =1 and therefore x # y. Without loss of
generality, we may suppose that x > y. If we make substitution

u— )
Since

u=x+y and v=x-y, we get x=%"Y and y =

x? +y%2 —6xy—1=0, it follows that (x — y)2 —4xy = 1. Thus, if we
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rewrite new values of x and y into the equation (x — y)2 —4xy =1, we get

v? — (1?2 —v?) = 1. This shows that u? - 20 = -1. By Corollary 2, it

follows that (u, v) = (%’ Py, 1) for some n>0. Therefore u = Q25+1

U and y=%"Y it is seen that

. u
and v =Py, ,;. Since x = 3

_ Q2n+1 + 2P2n,+1 Q2n+1 — 2P2n+1
4 4

and (2.4), we get x = B,,,; and y = B,,. Conversely, if (x, y) = (B,..1, B,, ),

X and y = . By using identities (2.3)

then by identity (1.7), it follows that x? + y2 —6xy = 1. This concludes
the proof. u

Theorem 2.12. There is no positive integer solutions of the equation

x2 +y2 - b6xy = —-1.

2 +y2 —6xy = -1. Then (x—y)2 —4xy = -1

Proof. Assume that x
and therefore x —y is an odd integer. Let x + y =u and x -y = v.
Then, it can be seen that u? — 202 = 1. Since v is an odd integer, then

u? =202 +1=3 (mod 8), a contradiction. This concludes the proof. [

Theorem 2.13. All positive integer solutions of the equation

x? +y2 —6xy —x = 0 are given by (x, y) = (B2, ByBj,1) or (x, y) =

(B2,1, B,By.1) with k>1.

Proof. Assume that x2 + y2 — 6xy —x = 0 for some positive integers
x and y. Then (4x)® + (4y)? — 6(4x)(4y) — 4(4x) = 0. Let 4x = a and
4y = b. Then, it can be seen that a® +b® —6ab — 4a = 0. That 1s,
(@ + b)? = 4a(2b + 1). Thus, by Theorem 2.7, there exists k>1 such
that (a, b) = (4B2, 4B,B,,1) or (a, b) = (4B}§+1, 4By, By, .1 ). Therefore,

a:4B]§, b = 4ByBy,; or a = 4Bf,;, b = 4B,By,;. Since a = 4x and
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b =4y, it is seen that x = B;%, y = BpBp,; or x = BI%+1’ y = BpBj,q-
Conversely, if (x, y) = (BZ, 4ByBy,,1) or (x, y) = (4B%,1, 4ByBy,1 ), it
1s easy to see that x? + yz —6xy —x = 0. n

Theorem 2.14. There is no positive integer solutions of the equation

x2+y2—6xy+x:0.

Proof. Assume that x2 + y2 — 6xy + x = 0 for some positive integers
x and y. Then (4x)* + (4y)? — 6(4x)(4y) + 4(4x) = 0. Thus, by Theorem
2.8, there exists k>1 such that (4x, 4y) = (4ByBj,; + 1, 4B? +1) or
(4x, 4y) = (4ByBy, +1, 4Bf,1 +1), which is impossible. This concludes
the proof. [
Actually, we produce many equations considering from Potter’s [9]

showing (y,, + Ypu1 —1)* =8y, ¥n:1. Now we give other similar equations,

whose solutions are related balancing and cobalancing numbers more.

While solving these equations, we again use Pell equations.

Theorem 2.15. All positive integer solutions of the equation
(x +y-1)? = 8xy+4 aregiven by (x, y) = (B, +b,, B, — b, 1 —1) with

nx1.

Proof. Assume that (x + y — 1)2 = 8xy + 4 for some positive integers

x and y. Then it follows that x # y. Without loss of generality, we may
suppose x > y. Let u=x+y and v =x —y. Thus, we get (u—l)2 =

2(u? -v?) +4. When we rearrange the equation, it is seen that

v? - oY ; 1 Y = 1. Thus by Corollary 1, there exists n>1. such that

v, urly_ Qon , Py ). Therefore v = Qon and v = 2P,, —1. Since
2 g 2 2n

we can write v = 2 and u = 4B, -1. On

Qon _ Vo and P, = 2B, 9

2 2
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the other hand, since u = x + ¥y and v = x — y, it is seen that x = urv

and y = % Now, if we write the values of © and v into the equalities

- -2+ 8B
x:u;v and y:uzv,we get x:% and
By —4 - (v; -2 — .
y =2 4(0” ). By identities (2.5), (2.6), and the equality
v, —2 .
Yn = =7 it follows that x = B, + b, and y = B, — b,,_; — 1.

Conversely, if (x, y) = (B, +b,, B, -b,_;—1) with n>1, then from

identities (2.5), (2.6), and Lemma 3, it follows that (x + y — 1)2 = 8xy + 4.

[
In a similar way, we can give the following theorem without proof:
Theorem 2.16. All positive integer solutions of the equation

(x+y+1)* = 8xy +4 aregiven by (x, y) = (B, +b, +1, B, — b, 1) with

nx1.

Finally, we give two theorems, whose solutions are interesting.

Theorem 2.17. All positive integer solutions of the equation x2 - 6xy

+y2+4x—1:0 are given by
Bn+2bn+1,B”_b2”‘1+1);nisodd

(v, 7) = (Bubuy Byt +2
2 ’ 2

); n is even

with n>1.

Proof. Assume that x? — 6xy + y2 +4x —1 = 0. Then, x2 - 6xy + y2
+4x -1 =0 iff (x + ¥ = 4x(2y — 1)+ 1 for some natural numbers x and

y. Next, when we multiply both sides of the equation (x + y)2 =

4x(2y — 1) + 1 by 4 and rewrite previous equation, we get
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(2x + 2y -1 +1)% = 8.2x(2y — 1) + 4.

Let u = 2x and v = 2y — 1. Then we get (u + v + 1) = 8uv + 4. Since all

positive integer solutions of the equation (u+v+1)% = 8uv+4 are
(w,v)=(B, +b, +1, B, =b,_1) or (u,v)=(B, -b,_1, B, +b, +1) by
Theorem 2.16, it is seen that v =B, +b, +1 and v=0B, -b,_; or
u=B,-b, 1 and v =B, +b, +1. Thus, we get x = (B, +b, +1)/2
and y = (B, —-b,_1 +1)/2 or x = (B, —b,_1)/2 and y = (B, +b, +2)/2.

It is well known that B,, is even iff n is even and b,, is always even. Then

we get
. (B”+2b”+l,B”_bZ"*1+l);nisodd
X, y)= 4 .
(B” 2bn_1 , By +§”+2 ); n is even

B, +b,+1 B, -b,1+1

Conversely, if (x, y) = ( ), where n is odd

2 ’ 2
B, - B 2 . .
and (x, y) = (=2 an_l , —= +§" il ), where n is even; by using
identities (2.5), (2.6), and Lemma 3, it can be shown that x2 — 6xy
+ y2 + 4x —1 = 0. This concludes the proof. [

Now we can give the following theorem easily:

Theorem 2.18. All positive integer solutions of the equation x? - 6xy

+y2 —4x — 1 = 0 are given by

(m‘%4‘1BWwW4ynwwd
_ 2 ’ 2 ’
x,y)=
( y) ( Bn + bn Bn — bn—l
2 ’ 2

-2 .
); n is even

with n>2.
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